Telegram Group & Telegram Channel
🧩 Задача для продвинутых дата-сайентистов: "Парадоксальная корреляция"

📖 Описание задачи

У вас есть DataFrame df с данными о рекламных кампаниях:


import pandas as pd

data = {
'campaign_id': [1, 2, 3, 4, 5, 6],
'spend': [1000, 1500, 1200, None, 2000, 1700],
'revenue': [2000, 2300, 2500, 1800, None, 2700]
}

df = pd.DataFrame(data)
print(df)


Результат:


campaign_id spend revenue
0 1 1000.0 2000.0
1 2 1500.0 2300.0
2 3 1200.0 2500.0
3 4 NaN 1800.0
4 5 2000.0 NaN
5 6 1700.0 2700.0


Вам нужно посчитать корреляцию между spend и revenue.

Вы пишете:


correlation = df['spend'].corr(df['revenue'])
print(correlation)


И получаете:


nan


❗️Но вы уверены, что данные связаны (чем больше spend, тем больше revenue), а Pandas возвращает NaN.

📝 Ваша задача:

1. Почему Pandas возвращает NaN?
2. Как правильно посчитать корреляцию?
3. Как бы вы обработали такие данные в продакшн-пайплайне?

---

🎯 Подвох (ключевой момент):

Метод corr() автоматически игнорирует строки, где хотя бы одно значение NaN.

В этом DataFrame остаются только строки с индексами 0, 1, 2, 5.
→ На этих данных корреляция может быть рассчитана.

Но главная проблема — тип данных.

Если данные были считаны, например, из CSV, где пустые значения остались строками, то Pandas определит колонку как object, а не float64:


print(df.dtypes)


Вывод:


spend object
revenue object


И тогда corr() вернёт NaN, потому что не смог интерпретировать данные как числовые.

---

💡 Решение:

1. Проверить типы данных:

```python
print(df.dtypes)
```

2. Привести к числовому типу:

```python
df['spend'] = pd.to_numeric(df['spend'], errors='coerce')
df['revenue'] = pd.to_numeric(df['revenue'], errors='coerce')
```

3. Посчитать корреляцию без NaN:

```python
correlation = df[['spend', 'revenue']].dropna().corr().iloc[0, 1]
print(correlation)
```

Теперь корреляция рассчитана корректно.

---

🔥 Дополнительный подвох:

А что если CSV-файл считан с
delimiter=';', а данные внутри разделены запятыми?
→ Тогда весь DataFrame будет одной колонкой с типом object, а Pandas не сможет даже начать обработку.

---

📝 Что проверяет задача:

Понимание, как Pandas обрабатывает NaN и object
Внимательность к типам данных
Умение находить ошибки при чтении и парсинге данных
Опыт очистки и предобработки грязных данных

🔥 Отличная проверка на внимательность и глубину работы с Pandas!



tg-me.com/machinelearning_interview/1787
Create:
Last Update:

🧩 Задача для продвинутых дата-сайентистов: "Парадоксальная корреляция"

📖 Описание задачи

У вас есть DataFrame df с данными о рекламных кампаниях:


import pandas as pd

data = {
'campaign_id': [1, 2, 3, 4, 5, 6],
'spend': [1000, 1500, 1200, None, 2000, 1700],
'revenue': [2000, 2300, 2500, 1800, None, 2700]
}

df = pd.DataFrame(data)
print(df)


Результат:


campaign_id spend revenue
0 1 1000.0 2000.0
1 2 1500.0 2300.0
2 3 1200.0 2500.0
3 4 NaN 1800.0
4 5 2000.0 NaN
5 6 1700.0 2700.0


Вам нужно посчитать корреляцию между spend и revenue.

Вы пишете:


correlation = df['spend'].corr(df['revenue'])
print(correlation)


И получаете:


nan


❗️Но вы уверены, что данные связаны (чем больше spend, тем больше revenue), а Pandas возвращает NaN.

📝 Ваша задача:

1. Почему Pandas возвращает NaN?
2. Как правильно посчитать корреляцию?
3. Как бы вы обработали такие данные в продакшн-пайплайне?

---

🎯 Подвох (ключевой момент):

Метод corr() автоматически игнорирует строки, где хотя бы одно значение NaN.

В этом DataFrame остаются только строки с индексами 0, 1, 2, 5.
→ На этих данных корреляция может быть рассчитана.

Но главная проблема — тип данных.

Если данные были считаны, например, из CSV, где пустые значения остались строками, то Pandas определит колонку как object, а не float64:


print(df.dtypes)


Вывод:


spend object
revenue object


И тогда corr() вернёт NaN, потому что не смог интерпретировать данные как числовые.

---

💡 Решение:

1. Проверить типы данных:

```python
print(df.dtypes)
```

2. Привести к числовому типу:

```python
df['spend'] = pd.to_numeric(df['spend'], errors='coerce')
df['revenue'] = pd.to_numeric(df['revenue'], errors='coerce')
```

3. Посчитать корреляцию без NaN:

```python
correlation = df[['spend', 'revenue']].dropna().corr().iloc[0, 1]
print(correlation)
```

Теперь корреляция рассчитана корректно.

---

🔥 Дополнительный подвох:

А что если CSV-файл считан с
delimiter=';', а данные внутри разделены запятыми?
→ Тогда весь DataFrame будет одной колонкой с типом object, а Pandas не сможет даже начать обработку.

---

📝 Что проверяет задача:

Понимание, как Pandas обрабатывает NaN и object
Внимательность к типам данных
Умение находить ошибки при чтении и парсинге данных
Опыт очистки и предобработки грязных данных

🔥 Отличная проверка на внимательность и глубину работы с Pandas!

BY Machine learning Interview


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/machinelearning_interview/1787

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

Traders also expressed uncertainty about the situation with China Evergrande, as the indebted property company has not provided clarification about a key interest payment.In economic news, the Commerce Department reported an unexpected increase in U.S. new home sales in August.Crude oil prices climbed Friday and front-month WTI oil futures contracts saw gains for a fifth straight week amid tighter supplies. West Texas Intermediate Crude oil futures for November rose $0.68 or 0.9 percent at 73.98 a barrel. WTI Crude futures gained 2.8 percent for the week.

Machine learning Interview from es


Telegram Machine learning Interview
FROM USA